Transistor

Dr. Cahit Karakuş

BJT Transistors

- A transistor is a device which acts like a controlled valve. The current flow permitted can be controlled.
- The bipolar junction transistor (BJT) is a three-terminal electronic valve - the output (collector) terminal current-voltage characteristics are controlled by the current injected into the input port (base). The BJT is a semiconductor device constructed from two pn junctions. There are two types of BJT: pnp and npn. Figures
 1 and 2 show the circuit symbols and common current and voltage polarities during normal (active) operation.

DC Analiz

$V_{C E} \leq 0 V \quad$ yada $\quad I_{c} \geq I_{c S A T} \quad ;$ Saturasyon $\quad V_{C E}=0 V \quad$ Olur.
$I_{B} \leq 0 A \quad$ ise $\quad ;$ Kesmede $\quad I_{B}=I_{C}=0 A \quad$ Olur.

Amplification occurs in the active region. Clipping occurs when the instantaneous operating point enters saturation or cutoff. In saturation, $v_{\mathrm{CE}}<0.2 \mathrm{~V}$.

- Current Relationship

$$
\begin{aligned}
& i_{E}=i_{C}+i_{B} \\
& i_{C}=\beta i_{B} \\
& i_{E}=(1+\beta) i_{B} \\
& i_{C}=\frac{\beta}{1+\beta} i_{E}=\alpha i_{E} \\
& \alpha=\frac{\beta}{1+\beta} \\
& \beta=\frac{\alpha}{1-\alpha}
\end{aligned}
$$

- Common Emitter
$\begin{aligned} & \text { (cont'd) } \\ & \text { Base current }\end{aligned}$
$I_{B}=\frac{V_{B B}-V_{B E} \text { (on) }}{R_{B}}$

C-E Portion

$$
\begin{aligned}
I_{C} & =\beta I_{B} \\
V_{C C} & =I_{C} R_{C}+V_{C E} \\
V_{C E} & =V_{C C}-I_{C} R_{C}
\end{aligned}
$$

Power Dissipation

$$
\begin{aligned}
& P T=I_{B} V_{B E}(\text { on })+I_{C} V_{C E} \\
& P T \cong I_{C} V_{C E}
\end{aligned}
$$

$$
\begin{aligned}
& V_{C C}=R_{C} * I_{C}+V_{C E}+R_{E} * I_{E} \\
& V_{C C}=R_{B} * I_{B}+V_{B E}+R_{E} * I_{E} \\
& I_{C}=\beta^{*} I_{B} \\
& I_{E}=I_{C}+I_{B}=\beta * I_{B}+I_{B}=(1+\beta) * I_{B} \\
& I_{E}=I_{C}+\frac{I_{C}}{\beta}=\left(\frac{1+\beta}{\beta}\right) * I_{C}
\end{aligned}
$$

$$
\begin{aligned}
& V_{C C}=R_{C} *\left(I_{C}+I_{B}\right)+V_{C E}+R_{E} * I_{E} \\
& V_{C C}=R_{C} *\left(I_{C}+I_{B}\right)+R_{B} * I_{B}+V_{B E}+R_{E} * I_{E} \\
& I_{C}=\beta * I_{B} \\
& I_{E}=I_{C}+I_{B}=\beta * I_{B}+I_{B}=(1+\beta) * I_{B} \\
& I_{E}=I_{C}+\frac{I_{C}}{\beta}=\left(\frac{1+\beta}{\beta}\right) * I_{C}
\end{aligned}
$$

$$
V_{B B}=V_{C C} * \frac{R_{2}}{R_{1}+R_{2}} \quad R_{B}=\frac{R_{1} * R_{2}}{R_{1}+R_{2}}
$$

$V_{C C}=R_{C} * I_{C}+V_{C E}+R_{E} * I_{E}$
$V_{B B}=R_{B} * I_{B}+V_{B E}+R_{E} * I_{E}$
$I_{C}=\beta^{*} I_{B}$
$I_{E}=I_{C}+I_{B}=\beta * I_{B}+I_{B}=(1+\beta) * I_{B}$
$I_{E}=I_{C}+\frac{I_{C}}{\beta}=\left(\frac{1+\beta}{\beta}\right) * I_{C}$

Calculate the transistor operating point ($I_{c}, V_{C E}$) in the following circuits assuming $\beta=100, \mathrm{~V}_{\mathrm{BE}}=\mathbf{0 . 7} \mathrm{V}$ and $\mathrm{V}_{\text {CEsat }}=\mathbf{0 . 2} \mathrm{V}$. What is the region of operation?

Example: Calculate the base, collector, and emitter curents and the C-E voltage for a common-emitter circuit. Calculate the transistor power dissipation.

Example: Calculate the currents and voltages in a circuit when the transistor is driven into saturation. Assume β $=100, V_{B E}(\mathrm{on})=0.7 \mathrm{~V}$, and $V_{C E}(\mathrm{sat})=0.2 \mathrm{~V}$.

(a)

(b)

(c)

- Amplifier

(a)
(b)

Introduction to BJT Small Signal Analysis

CHAPTER 5

Introduction

-To begin analyze of small-signal AC response of BJT amplifier the knowledge of modeling the transistor is important.
-The input signal will determine whether it's a small signal (AC) or large signal (DC) analysis.
-The goal when modeling small-signal behavior is to make of a transistor that work for small-signal enough to "keep things linear" (i.e.: not distort too much) [3]
-There are two models commonly used in the small signal analysis:
a) r_{e} model
b) hybrid equivalent model

Introduction

Disadvantage

- R_{e} model
- Fails to account the output impedance level of device and feedback effect from output to input
- Hybrid equivalent model
- Limited to specified operating condition in order to obtain accurate result

Amplification in the AC domain

- The transistor can be employed as an amplifying device. That is, the output sinusoidal signal is greater than the input signal or the ac input power is greater than ac input power.
- How the ac power output can be greater than the input ac power?

Amplification in the AC domain

- Conservation; output power of a system cannot be large than its input and the efficiency cannot be greater than 1
- The input dc plays the important role for the amplification to contribute its level to the ac domain where the conversion will become

as $\eta=P_{o(a c)} / P_{i(d c)}$

Amplification in the AC domain

- The superposition theorem is applicable for the analysis and design of the dc \& ac components of a BJT network, permitting the separation of the analysis of the $\mathrm{dc} \& \mathrm{ac}$ responses of the system.
- In other words, one can make a complete dc analysis of a system before considering the ac response.
- Once the dc analysis is complete, the ac response can be determined using a completely ac analysis.

BJT Transistor Model

- Use equivalent circuit
- Schematic symbol for the device can be replaced by this equivalent circuits.
- Basic methods of circuit analysis is applied.
- DC levels were important to determine the Q-point
- Once determined, the DC level can be ignored in the AC analysis of the network.
- Coupling capacitors \& bypass capacitor were chosen to have a very small reactance at the frequency of applications.

BJT Transistor Model

The AC equivalent of a network is
obtained by:

1. Setting all DC sources to zero \& replacing them by a shortcircuit equivalent.
2. Replacing all capacitors by a short-circuit equivalent.
3. Removing all elements bypassed by short-circuit equivalent.
4. Redrawing the network.

DC supply \rightarrow "0" potential
$\cdot \mathrm{I} / \mathrm{p}$ coupling capacitor $\rightarrow \mathrm{s} / \mathrm{c}$

- Large values
- Block DC and pass AC signal
- O/p coupling capacitor $\rightarrow \mathrm{s} / \mathrm{c}$
- Large values
- Block DC and pass AC signal

- Bypass

capacitor $\rightarrow \mathrm{s} / \mathrm{c}$ -Large values

Redraw the woltage-divider configuration after removing dc supply and insert sic for the capacitors

Example

Example

Example

The re transistor model

- Common Base PNP Configuration

Common Base PNP Configuration

- Transistor is replaced by a single diode between E \& B, and control current source between B \& C
- Collector current Ic is controlled by the level of emitter current le.
- For the ac response the diode can be replaced by its equivalent ac resistance.

Common Base PNP Configuration

- The ac resistance of a diode can be determined by the equation;

Where I_{D} is the dc
 current through the diode at the Q-point.

Common Base PNP Configuration

- Input impedance is relatively small and output impedance quite high.

- range from a few Ω to $\max 50 \Omega$

- Typical values are in the $\mathrm{M} \Omega$

The common-base characteristics

Voltage Gain

output vol tage: $V_{o}=-I_{o} R_{L}$

$$
\begin{aligned}
& =-\left(-I_{C}\right) R_{L} \\
& =\alpha I_{e} R_{L}
\end{aligned}
$$

input volt age : $\quad V_{i}=I_{i} Z_{i}$

$$
\begin{aligned}
& =I_{e} Z_{i} \\
& =I_{e} r_{e}
\end{aligned}
$$

voltage gain : $A_{V}=\frac{V_{O}}{V_{i}}=\frac{\alpha I_{e} R_{L}}{I_{e} r_{e}}$

$$
=\frac{\alpha R_{L}}{r e}
$$

$$
\therefore A_{V}=\frac{R_{L}}{r e}
$$

Current Gain

- The fact that the polarity of the V_{0} as determined by the current I_{C} is the same as defined by figure below.
- It reveals that V_{o} and V_{i} are in phase for the common-base configuration.

Common Base PNP Configuration

Approximate model for a common-base npn transistor configuration

Example 1: For a common-base configuration in figure below with $I_{E}=4 \mathrm{~mA}, \alpha=0.98$ and $A C$ signal of 2 mV is applied between the base and emitter terminal:
a) Determine the Z_{i} b) Calculate A_{v} if $R_{L}=0.56 \mathrm{k} \Omega$
c) Find Z_{o} and A_{i}

Solution:

$$
\begin{aligned}
& \text { a) } \mathrm{Z}_{\mathrm{i}}=\mathrm{re}=\frac{26 \mathrm{~m}}{\mathrm{IE}}=\frac{26 \mathrm{~m}}{4 \mathrm{~m}}=6.5 \Omega \\
& \text { b) } \mathrm{A}_{\mathrm{v}}=\frac{\alpha \mathrm{RL}_{\mathrm{L}}}{\mathrm{re}^{2}}=\frac{0.98(0.56 \mathrm{k})}{6.5}=84.43
\end{aligned}
$$

$$
\text { c) } \mathrm{Z}_{\mathrm{o}} \cong \infty \Omega
$$

$$
\mathrm{Ai}_{\mathrm{i}}=\frac{\mathrm{I} \mathrm{o}}{\mathrm{Ii}}=-\alpha=\underline{\underline{-0.98}}
$$

Example 2: For a common-base configuration in previous example with $I_{e}=0.5 \mathrm{~mA}, \alpha=0.98$ and $A C$ signal of 10 mV is applied, determine:
a) Z_{i}
c) A_{v}
d) A_{i}
e) I_{b}

$$
\begin{aligned}
& \text { e) } \mathrm{Ib}=\mathrm{Ie}-\mathrm{Ic} \\
& =\mathrm{Ie}-\alpha \mathrm{Ie} \\
& =0.5 \mathrm{~m}(1-\alpha) \\
& =0.5 \mathrm{~m}(1-0.98) \\
& =10 \mu \mathrm{~A}
\end{aligned}
$$

Common Emitter NPN Configuration

- Base and emitter are input terminal
- Collector and emitter are output terminals

Common Emitter NPN Configuration

- Substitute re equivalent circuit

- Current through diode

$$
\begin{aligned}
& I_{e}=I_{c}+I_{b}=\beta I_{b}+I_{b} \\
& I_{e}=(\beta+1) I_{b} \cong \beta I_{b}
\end{aligned}
$$

- Input impedance

input impedance : $Z_{i}=\frac{V_{i}}{I_{i}}=\frac{V_{b e}}{I_{b}}$
input volt age :

$$
\begin{aligned}
V_{i} & =I_{c} r_{e} \\
& =(\beta+1) I_{b} r_{e} \\
Z_{i} & =\frac{(\beta+1) I_{b} r_{e}}{I_{b}}
\end{aligned}
$$

$$
\therefore Z_{i}=(\beta+1) r_{e}
$$

β usually greater than $1 ; \quad Z_{i} \cong \beta r_{e}$

The output graph

Output impedance Z_{o}

Voltage Gain

Current Gain

output vol tage : $V_{o}=-I_{o} R_{L}$

$$
\begin{aligned}
V_{o} & =-I_{c} R_{L} \\
& =-\beta I_{b} R_{L}
\end{aligned}
$$

input volt age : $V_{i}=I_{i} Z_{i}$

$$
=I_{b} \beta r_{e}
$$

so that $\begin{aligned} \quad A_{V} & =\frac{V_{o}}{V_{i}}=\frac{-\beta I_{b} R_{L}}{I_{b} \beta r_{e}} \\ \therefore A_{V} & =\frac{-R_{L}}{r_{e}}\end{aligned}$

$$
\begin{aligned}
& A_{i}=\frac{I_{o}}{I_{i}}=\frac{I_{C}}{I_{b}}=\frac{\beta I_{b}}{I_{b}} \\
& \therefore A_{i}=\beta
\end{aligned}
$$

re model for common-emitter

Example 3: Given $\beta=120$ and $\mathrm{I}_{E(d \mathrm{c})}=3.2 \mathrm{~mA}$ for a commonemitter configuration with $\mathrm{ro}=\propto \Omega$, determine:
a) Z_{i} b) A_{v} if a load of $2 k \Omega$ is applied c) A_{i} with the $2 k \Omega$ load

```
Solution:
a) \(r_{e}=\frac{26 m}{I E}=\frac{26 m}{3.2 m}=8.125 \Omega\)
\(\mathrm{Z}_{\mathrm{i}}=\beta \mathrm{re}_{\mathrm{e}}=120(8.125)=975 \Omega\)
```

b) $A_{v}=-\frac{R_{L}}{r_{e}}=-\frac{2 k}{8.125}=\underline{\underline{-246.15}}$
c) $\mathrm{Ai}_{\mathrm{i}}=\frac{\mathrm{I}_{0}}{\mathrm{Ii}_{\mathrm{i}}}=\beta=\underline{\underline{120}}$

Example 4: Using the npn common-emitter configuration, determine the following if $\beta=80, \mathrm{I}_{\mathrm{E}(\mathrm{dc})}=2 \mathrm{~mA}$ and $\mathrm{r}_{0}=40 \mathrm{k} \Omega$
a) Z_{i}
b) A_{i} if $\mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega$
c) $A v$ if $R_{L}=1.2 k \Omega$

$$
\begin{aligned}
& \text { Solution: } \\
& \text { a) } \mathrm{re}=\frac{26 \mathrm{~m}}{\mathrm{IE}}=\frac{26 \mathrm{~m}}{2 \mathrm{~m}}=13 \Omega \\
& \mathrm{Zi}=\beta \mathrm{re}=80(13)=1.04 \mathrm{k} \Omega
\end{aligned}
$$

r_{e} model for the C-E transistor configuration

Solution (cont)
b) $\mathrm{Ai}=\frac{\mathrm{I} \text { o }}{\mathrm{Ii}}=\frac{\mathrm{IL}}{\mathrm{Ib}}$
$\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{ro}(\beta \mathrm{Ib})}{\mathrm{r}_{\mathrm{o}}+\mathrm{R}_{\mathrm{L}}}$
$\mathrm{ro}(\beta \mathrm{Ib})$
$\mathrm{Ai}_{\mathrm{i}}=\frac{\overline{\mathrm{r}_{\mathrm{o}}+\mathrm{RL}_{\mathrm{L}}}}{\mathrm{Ib}}=\frac{\mathrm{ro}_{0}}{\mathrm{r}_{\mathrm{o}}+\mathrm{RL}} \cdot \beta=\frac{40 \mathrm{k}}{40 \mathrm{k}+1.2 \mathrm{k}}(80)$
$=77.67$
c) $\mathrm{Av}=-\frac{\mathrm{R}_{\mathrm{L}} \| \mathrm{r}_{\mathrm{o}}}{\mathrm{re}_{\mathrm{e}}}=-\frac{1.2 \mathrm{k} \| 40 \mathrm{k}}{13}=\underline{\underline{-89.6}}$

Common Collector Configuration

- For the CC configuration, the model defined for the common-emitter configuration is normally applied rather than defining a model for the common-collector configuration.

